2 Prove that any algorithm which returns an ϵ -approximate minimizer of a function $f : [0,1]^n \to \mathbb{R}$ with $|f(\boldsymbol{x}) - f(\boldsymbol{y})| \leq L ||\boldsymbol{x} - \boldsymbol{y}||_{\infty}$ requires at least $\left(\left\lfloor \frac{L}{2\epsilon} \right\rfloor\right)^n$ queries in the zero-th order oracle model if $\epsilon < L/2$.

Let $\epsilon < L/2$ and $I = [0, 1]^n$. Suppose, to produce a contradiction, that an algorithm ALG returns an ϵ -approximate minimizer of a function $f : I \to \mathbb{R}$ with $|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le L ||\boldsymbol{x} - \boldsymbol{y}||_{\infty}$ using less than $(\lfloor L/2\epsilon \rfloor)^n$ queries to a 0-th order oracle.

Suppose ALG chooses to evaluate initially at some $x_1 \in I$. When given $f(x_1) = 0$, ALG chooses $x_2 \in I$, and so on, where ALG chooses x_i given $f(x_k) = 0$ for all $k \in \{1, \ldots, i\}$ and $i \in \{1, \ldots, n\}$. Let $X = \{x_1, \ldots, x_n\}$ and call ALG's result \overline{x} .

First, suppose that $\min_{\boldsymbol{x}\in X} \|\overline{\boldsymbol{x}} - \boldsymbol{x}\| \ge \epsilon/L$. Then the tightest bound we may obtain on $f(\overline{\boldsymbol{x}})$ is

$$|f(\overline{\boldsymbol{x}})| = \max_{\boldsymbol{x} \in X} |f(\overline{\boldsymbol{x}}) - f(\boldsymbol{x})| \le L \min_{\boldsymbol{x} \in X} ||\boldsymbol{x} - \overline{\boldsymbol{x}}|| = M.$$

However we may have $M \geq \epsilon$. Thus, we may construct an f such that $f(\overline{x}) \geq \epsilon$, which would yield

$$\epsilon = f(\overline{\boldsymbol{x}}) < f(\boldsymbol{x}^*) + \epsilon \le f(\boldsymbol{x}_0) + \epsilon = \epsilon,$$

which is a contradiction.

Now, suppose that $\min_{x \in X} \|x - \overline{x}\| < \epsilon/L$. Then, there must exist some point x' such that

$$\min_{\boldsymbol{x}\in X\cup\{\overline{\boldsymbol{x}}\}} \|\boldsymbol{x}'-\boldsymbol{x}\| \ge \frac{\epsilon}{L}.$$
(1)

To see this, we note that the set of points p satisfying $||p - x|| \leq \epsilon/L$ is exactly the interior of an *n*-cube of side $2\epsilon/L$ centered at x, which has an *n*-volume of $(2\epsilon/L)^n$. We know that $|X \cup \{\overline{x}\}| \leq (\lfloor L/2\epsilon \rfloor)^n$, so the total number of *n*-cubes not satisfying Eq. (1) is at most $(\lfloor L/2\epsilon \rfloor)^n$. Since $\min_{x \in X} ||x - \overline{x}|| < \epsilon/L$, the *n*-cube around \overline{x} must overlap an *n*-cube around some point in X. Thus, the total *n*-volume V in the intersection of all of the *n*-cubes is strictly less than the sum of their *n*-volumes

$$V < (2\epsilon/L)^n (|L/2\epsilon|)^n \le 1.$$

Since V is the *n*-volume of the region of points that do not satisfy Eq. (1) and V < 1, the volume of I, there must exist some point $\mathbf{x}' \in I$ satisfying Eq. (1). Then as in the first case, the tightest bound on $|f(\mathbf{x}')|$ that we may obtain is $|f(\mathbf{x}')| \leq M$ for $M > \epsilon$. Thus, we may construct an f such that $f(\overline{\mathbf{x}}) = 0$ and $f(\mathbf{x}') = -\epsilon$, which would yield

$$0 = f(\overline{x}) < f(x^*) + \epsilon \le f(x') + \epsilon = 0,$$

which is also a contradiction.

Therefore, any algorithm which returns an ϵ -approximate minimizer of a function f requires at least $(\lfloor L/2\epsilon \rfloor)^n$ queries to the oracle model, as desired.