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Tuesday, February 5, 2018

Note: The purpose of this problem set is to motivate convex optimization, as well as
introducing you to common tools used in analyzing the performance or fundamental limits
of optimization algorithms. As you will see, optimizing a generic function is hard in a
meaningful sense, yet optimizing so-called ‘convex’ functions is quite easy. Since convex
functions are surprisingly ubiquitous in the area of machine learning and statistics, it’s
important to know these potentially surprising properties.

1 Suppose we wish to minimize a continuous function f : [0, 1]→ R via an algorithm which
sequentially queries f(xi) at points x1, x2, . . . , xn ∈ [0, 1] before reporting some x ∈ [0, 1]
that is intended to approximate the minimizer x? ∈ [0, 1] with f(x?) = minx∈[0,1] f(x).
In the oracle model of computation, we measure the number of queries n (the sample
complexity) to our function needed to ensure that f(x) < f(x?) + ε for some ε > 0 as a
way to indicate the complexity of our algorithm. Such an x is known as an ε-approximate
minimizer, and since in this setting we are only given information about the function value
(and not, say, the derivative at each xi as well) this is known as a zero-th order oracle. We
will prove that any algorithm which returns an ε-approximate minimizer of a continuous
function f : [0, 1] → R (in particular, a polynomial) has infinite sample complexity via a
technique known as a resisting oracle. Flesh out the following sketch (and in particular,
construct q):

Suppose by way of contradiction that we have an algorithm which can find an ε-approximate
minimizer to any continuous function using at most n < ∞ queries to the oracle. In an
attempt to ‘trick’ the algorithm into thinking that an input f is the zero function, suppose
our oracle returns f(xi) = 0 for all x1, x2, . . . , xn and consider the resulting x. Since the
algorithm is deterministic, it must return a fixed x, yet we can construct a polynomial
q : [0, 1]→ R which satisfies q(x1) = · · · = q(xn) = q(x) = 0 yet minx∈[0,1] q(x) = −ε. This
contradicts the fact that our algorithm supposedly guaranteed that 0 = q(x) < q(x?)+ε = 0,
and hence the sample complexity of such an algorithm is at least n. But since n was an
arbitrary natural number, this means that sample complexity is infinite, and one cannot
hope to minimize an arbitrary continuous (even analytic) function without querying a dense
subset of the domain and effectively determining the function uniquely.
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2 Prove that any algorithm which returns an ε-approximate minimizer of a function f :
[0, 1]n → R with |f(x)−f(y)| ≤ L‖x−y‖∞ requires at least

(⌊
L
2ε

⌋)n
queries in the zero-th

order oracle model if ε < L/2.
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3 Suppose that f : Rn → R is twice differentiable, and that the eigenvalues λi(x) of the
Hessian ∇2f(x) are uniformly bounded between 0 < ` < λi(x) < L across all of Rn. Such a
function is known as `-strongly convex Consider the following algorithm, known as gradient
descent, which finds an approximation xT to a global minimizer x∗ of f .

Data: An arbitrary starting point x0 ∈ Rn, a step size 0 < α < 2/L, and a
maximum number of iterations T ∈ N.

Result: An approximate global minimizer xT ∈ Rn to f .
for t = 1, 2, . . . , T do

xt = xt−1 − α∇f(xt−1)
end

Prove that if 1−q
`
≤ α ≤ 1+q

L
for some 0 < q < 1 then the global minimizer x∗ is unique and

‖xT − x∗‖2 ≤
αqT

1− q
‖∇f(x0)‖2 ≤

2

L

qT

1− q
‖∇f(x0)‖2.

That is to say that if we want ‖xT − x∗‖2 ≤ ε then we can just set

T ≥ log(1
q
)−1 log

(
2‖∇f(x0)‖2
εL(1− q)

)
to guarantee thisa. Hint Define F (x) = x − α∇f(x). Prove that the eigenvalues γi(x) of
the Jacobian ∇F (x) are always bounded above by q: |γi(x)| ≤ q. Apply the Banach Fixed
Point Theorem from analysis.

aIt turns out that this is the best convergence rate you could hope for with this class of functions f .
[Arjevani2016]
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