
Math 389L
Problem Set 2

Tuesday, February 12, 2019

Note: This problem set is about linear regression. In particular, we hope to show why
traditional methods for solving linear regression problems don’t work well as the number of
data points n in a data set becomes very large. Two methods (traditional gradient descent
and stochastic gradient descent) are proposed to solve these issues and you will analyze their
issues. We will talk about more recent developments in the literature on this extremely
common problem (matrix sketching and leverage score sampling) in class.

1 Given a data matrix A ∈ Rn×p and an output vector b, the least squares problem asks
us to find the vector x which minimizes f(x) = 1

2
‖Ax − b‖22. Here we will ask you to

analyze the performance of gradient descent applied to solving this problem. For reference,
note that exact, stable solutions to the least squares problem take 2np2− 2

3
p3 floating point

operations [GolubVanLoan, Algorithm 5.3.2], though these solutions in general don’t take
advantage of sparsity in the data matrix A.

(a) Show that the gradient ∇f(x) = A∗(Ax− b) and the Hessian ∇2f(x) = A∗A. Con-
clude that f is σmin(A)2-strongly convex, where for simplicity σ(A) are the square root
of the eigenvalues of A∗A.

(b) How many floating point operations does it take to compute ∇f(x) for an arbitrary
input x ∈ Rp if we multiply matrices in the traditional way? Write a bound both in
terms of the dimensions n, p, as well as a different bound in terms of the number of
non-zero entries in A (which we denote nnz(A))

(c) Give an upper bound on the number of floating point operations it takes to com-
pute an approximate least-squares solution x̃ with ‖x̃ − x‖ ≤ ε via gradient de-
scent which depends on the actual data A and b only through the condition number
κ = σmax(A)/σmin(A), σmin(A), and ‖A∗b‖2. Give another bound in terms of nnz(A)
which is tighter for sparse data matrices. Assume that we start the algorithm at the
zero vector x0 = 0, and utilize the ‘optimal’ learning rate to minimize your bounds.

(d) Detail when you would, and would not, want to use this gradient-descent based ap-
proach to solving least squares problems over the traditional exact approach.

�

1



2 Observe that we can find the least squares solution x from Problem 1 by minimizing
the rescaled function

f(x) =
1

2n

n∑
i=1

(a∗ix− bi)2, ∇f(x) =
1

n

n∑
i=1

ai(a
∗
ix− bi)

where ai are the rows of A. To mitigate the linear dependence on n in the previous example
we might note that randomly sampling i from {1, 2, . . . , n} and giving an approximate
gradient descent update

xt = xt−1 − αt−1 ai(a
∗
ixt−1 − bi)︸ ︷︷ ︸

gk

gives the original gradient descent update in expectation while ignoring completely the
number of samples n. Thus it is natural to think that the algorithm given by replacing the
original gradient descent update with this stochastic gradient update should perform well,
and you will prove that this is true. To do so, we will assume that the `2-norm

√
E‖gk‖22 ≤ G

and f is `-strongly convex (i.e. σmin(A) ≥ `, or f(x)−f(y) ≥ ∇f(y)∗(x−y)+ `
2
‖x−y‖22).

(a) Prove via strong convexity that 〈∇f(xt),xt − x〉 ≥ `‖xt − x‖22.

(b) Prove E‖xt+1 − x‖22 ≤ (1− 2`αt)E‖xt − x‖22 + α2
tG

2.

(c) Prove that E‖xt − x‖22 ≤
max{‖x0−x∗‖22,G2/`2}

t
when we set αt = 1

`(t+1)
.

(d) Give an upper bound on the number of floating point operations it takes to compute
an approximate least-squares solution x̃ with E‖x̃ − x‖2 ≤ ε via stochastic gradient
descent like in Problem 1. Can sparsity of A help?

(e) In which situations might you prefer to use this method over, say, gradient descent or
a traditional exact solver?

�

2


